Definitely not new. This is how RFID tags work. They harvest energy from the transmitter to power the circuitry in the tag to send back a response.
And low-power really means low powered… Like… milliamps. If you fed an RFID chip directly, you’d need to supply about 1 mW depending on the specific chip… 1 milliwatt…
In order to feed that chip with a transmitter you feed up to 2W. So up to 99.95% losses… It’s NOT economical for any other device that isn’t super low power.
Hell Qi charging is just as bad. Qi2, newest and greatest… Which you basically have the devices touching only get up to 80% at absolute best efficiency numbers. Every mm you add, drops that number significantly.
None of this is going to enable “battery free” for basically anything that any consumer would care to be battery free. And honestly I wish we wouldn’t pump the airwaves with all sorts of garbage just because it enabled the most minimal amount of “convenience” for things that never needed to be convenient to begin with.
https://en.m.wikipedia.org/wiki/Rectenna
What they’ve done here is use the very old existing rectenna technology and new types of nanoscale rectenna arrays to capture very low energy radio waves without an external antenna. We’re taking -20 dBm or 10 μW.
In the end, I welcome any rectenna advances because if we ever build an efficient optical rectenna it’ll blow photovoltaics out of the water by efficiency. Optical rectennas are like fusion power in just how revolutionary they would be to our energy economy.
Wouldn’t this just decrease the reception for rf devices? Isn’t it just stealing power from the system to power other devices?
No more than any random objects.
Think of it like a solar panel. Yes, it blocks light from things behind it, but it doesn’t suck light from nearby.
That’s interesting! I thought that if you for example have a 50w RF transmitter, taking 40w from it would make it act as a 10w one for the other devices around it.
Thx for the explanation :3
It you could build a 40w antenna sure, but it’d basically have to be a dome surrounding the transmitting one at that point.
Isn’t that one of Nikola Tesla’s inventions? Free electricity through the air?
Nah, that was just blasting a microwave beam at a collector. It would work and be meh on efficiency, but also bake everything between the two points…neat innovative theory, bad idea. Tesla was a smart dude, but his bad ideas were left ignored for a reason.
That’s not right… He was trying to achieve wireless power through Earth resonance. Which AFAIK is pretty much now completely debunked as never going to work … but it tracks with Tesla’s world view.
It’s kind of crazy how much you can build without a complete understanding… There’s probably stuff we think we understand now that we really don’t and other stuff left to discover.
I was thinking his wireless transmission, not harvesting… yeah, that is pretty out there.
No doubt there is plenty to discover, but there is a lot of B.S. that can be discarded, but people cling to it.
He also wanted to use the resonance for transmission AFAIK. He didn’t really buy into the radio waves from a scientific standpoint (which to be fair to him … everything was more theoretical back then; if he was in the modern era, he’d have better information to use).
In no way is this a discovery.
This is what crystal diode radios are from the '40s.
Some guy built one in Japan, it’s basically just a thousand transceivers in a box hooked up to a USB port harvesting radio/wifi signals.
Here’s a guy using them to make light:
It’s super cool, but not a discovery.
A friend of mine was working on a car chassis and that thing suddenly started to receive radio. You could faintly hear it coming from the chassis and not from somewhere else. We thought we were going crazy. Touching the chassis made it go away.